Research on PDF Shape Control for Nonlinear Stochastic System Using an Approximate Solution of FPK Equation

نویسندگان

چکیده

In this paper, we developed a probability density function (PDF) shape control method for non-linear stochastic systems using hybrid logistic (HLF) as an approximate PDF of the state variable. First, functional relationship between and controller was established based on Fokker–Planck–Kolmogorov (FPK) equation. Then, optimal derivation completed optimization inner product definition Hilbert space. This approach is suitable any system. To evaluate effectiveness performance proposed method, conducted comparison experiment with multi-Gaussian closure (MGC) exponential polynomial (EP) method. The experimental results show that, different types targeted PDFs (symmetric unimodal, asymmetric bimodal, trimodal shapes), obtained HLF can make variable track effectively. particular, when has or complex shape, technique comparatively better effects. Compared EP our requires much smaller number parameters, greatly reducing computational complexity while achieving same study provides another controlling variables in systems, which important research significance.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient approximate method for solution of the heat equation using Laguerre-Gaussians radial functions

In the present paper, a numerical method is considered for solving one-dimensional heat equation subject to both Neumann and Dirichlet initial boundary conditions. This method is a combination of collocation method and radial basis functions (RBFs). The operational matrix of derivative for Laguerre-Gaussians (LG) radial basis functions is used to reduce the problem to a set of algebraic equatio...

متن کامل

Approximate solution of system of nonlinear Volterra integro-differential equations by using Bernstein collocation method

This paper presents a numerical matrix method based on Bernstein polynomials (BPs) for approximate the solution of a system of m-th order nonlinear Volterra integro-differential equations under initial conditions. The approach is based on operational matrices of BPs. Using the collocation points,this approach reduces the systems of Volterra integro-differential equations associated with the giv...

متن کامل

development and implementation of an optimized control strategy for induction machine in an electric vehicle

in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...

15 صفحه اول

existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types

بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی ‎‏بیان شد‎‎‏ه اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...

15 صفحه اول

Nonlinear Control of Rigid Manipulators Based on Approximate Solution of HJB Equation

The paper presents the design of nonlinear state feedback controller for a rigid manipulator. In order to obtain such controllers, a partial differential equation, HJB equation, should be solved, which is difficult to find a closed solution of that. In this paper, an efficient method using Taylor series expansion of nonlinear terms is used to tackle this problem. The tracking performance of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Axioms

سال: 2023

ISSN: ['2075-1680']

DOI: https://doi.org/10.3390/axioms12030303